\Leftrightarrow Draka

Agenda

MMF OM4

MaxCap550

Multimode fibre solutions in IEEE 802.3 10GBASE-SX (850nm):

MaxCap550

Решения по многомодовому волокну, предусмотренные в IEEE 802.3 10GBASE-SX (850нм):

OM3 / OM4 in 40/100 GbE

Multimode fibre solutions in IEEE 802.3ba 40GBASE and 100GBASE:

Extended reach in discussion: OM-4 / (850 nm)

In 40/100 GBASE more relaxed transceivers are used with wider spectral width \rightarrow shorter distances

Datacom/LAN Market Outlook

-Migration to high bit rates (10-100 Gigabit Base Ethernet) forces high grade MMF.
-Therefore the demand of high grade MMF is strongly increasing.
-High grade MMF is available only by the big 5 players, essential is a very high Effective Modal Bandwidth (EMB) and a very tight Dipersion Mode Delay (DMD).

- Draka is market leader in this field

High quality testing OM4 MaxCap550

All MaxCap300 (OM3) and MaxCap550 (OM4) fiber are checked under the best practice known, including:

Many precautions \& tight internal specifications applied to DMD test benches

All OM3 and OM4 fiber fulfill both DMD and EMBc specs

Ti:Sapp laser DMD testing for MaxCap550 fiber

Tightened inner DMD mask

All Draka OM3 and OM4 products are characterised by tightened inner DMD mask:

$$
0-18 u m
$$

instead of 5-18 um (TIA / IEC)
\rightarrow Reduced Low Order DMD
\rightarrow Improved system margin for center-launch lasers

Actual OM4 specs

EMBc > $4700 \mathrm{MHz} . \mathrm{km}$ (plus DMD specs)
OFL BW850nm > 3500 MHz.km
OFL BW1300nm > $500 \mathrm{MHz} . \mathrm{km}$

Note: VAD is not appropriate for MMF production

Optimize the refractive index

Reduce Differential Mode Delay (DMD)
\rightarrow Increase bandwidth

Collapsing Process

PCVD process shows excellent core refractive index profiles
OVD process shows systematic core refractive index profile distortions near core center due to consolidation of soot preform

This profile distortion is not visible as sharp center dip, but more as an extended profile deviation, causing larger DMD (double pulses) and lower bandwidth

Draka

Diff. Mode Delay testing

For 10 GbE individual mode groups need to

Competition DMD testing
31.0017 .013050 .1120

\Leftrightarrow Draka

Agenda

MMF BIF

Draka

MaxCap-BB-OM3/4

Macrobending specification

Macrobending specification of regular $50 \mu \mathrm{~m}$ multimode fibers is still based on very old applications:

$$
100 \text { turns } \quad R=37.5 \mathrm{~mm} \quad \rightarrow \leq 0.5 \mathrm{~dB}(850 \mathrm{~nm}+1300 \mathrm{~nm})
$$

MaxCap-BB-OM3 / OM4 macrobending specification is defined on much smaller bend radii, as can be found in practical Datacenter and LAN environment:

Macrobend loss: 2 turns	850 nm	1300 nm
$\mathrm{R}=7.5 \mathrm{~mm}$	$\leq 0.2 \mathrm{~dB}$	$\leq 0.5 \mathrm{~dB}$
$\mathrm{R}=15 \mathrm{~mm}$	$\leq 0.1 \mathrm{~dB}$	$\leq 0.3 \mathrm{~dB}$

Note: MaxCap-BB-OM3 / OM4 offers lowe bend loss than regular MaxCap fibers and up to 10 times lower bend loss than regular 50 $\mu \mathrm{m}$ MMF: ITU-T Rec. G.651.1 (MMF:
2007) states:

2 turns $R=15 \mathrm{~mm} \quad \rightarrow \leq 1 \mathrm{~dB}(850 \mathrm{~nm}+1300 \mathrm{~nm})$

MaxCap-BB-OM3/4
 Introduction

Draka combined 2009 MaxCap and BendBright technology, bringing Bend-Insensitivity to the multimode fiber world !!!
\rightarrow MaxCap-BB-OM3 / OM4: combining high bandwidth with low bend loss

$\rightarrow \quad \rightarrow$ using special refractive index profile ぃuı...и,
\rightarrow only feasible with Draka PCVD process
\Rightarrow Without sacrifice or trade-off on bandwidth or other performance specifications

Draka

MaxCap-BB-OM3/4
 Principle

MaxCap-BB-OM3 / OM4 is based on similar Trench-Assisted technology as highly successful BendBright-XS SMF

- Trench (reduced refractive index ring) just outside core/cladding interface confines especially higher order modes (in the outer core region) to the core, preventing them from escaping in strong bends
\rightarrow higher order modes normally most sensitive for bending !!

MaxCap-BB-OM3/4 Need for BI-MMF

All 850nm data systems show reduced system margins with increasing system speeds
\Rightarrow Bend-Insensitive MaxCap-BB-OM3 / OM4 fibers can relax such reduced system margins in current and future networks:

- In practical Datacenter designs often more connectors are applied than foreseen in basic lay outs (e.g. in local distribution points), putting pressure on the total connection insertion loss
\rightarrow MaxCap-BB-OM4 offers additional system margin on top of extra margin by high OM4 bandwidth

ENI = Equipment Network Interface MD = Main Distributor ZD = Zone Distributor

LDP = Local Distribution Point EO = Equipment Outlet

MaxCap-BB-OM3/4 Need for BI-MMF

Bend-Insensitive MaxCap-BB-OM3 / OM4 fibers can relax limited margins in current and future high speed Datacom links:

- Massive optical cabling in Datacenters set pressure on installation practices with inherent chance of increasing macro- and microbending loss
- Bend-insensitive multimode fibers offer reduced size cable cabinets, reducing ownership costs

Violating minimum bend radius

MaxCap-BB-OM3/4
 Bend test examples

MaxCap-BB-OM3 / OM4 fiber compared in practical bend

 testing to regular OM3 / OM 4 multimode fiber:

Regular OM3 $\rightarrow 3.37 \mathrm{~dB}$

MaxCap-BB-OM3
$\rightarrow 0.14 \mathrm{~dB}$
$\leftarrow 4$ turns around 4 mm mandrel

Sharp 90 degree kink test (pinched fiber) \rightarrow

2mm indoor cable
tested in sharp 90 degree angle

Regular OM3:
$\Rightarrow 2.75 d B$

Draka

MaxCap-BB-OM3/4

Applications at network level

MaxCap-BB-OM3 / OM4 is recommended for:

Dense cabling of Datacenter backbone and horizontal cabling (10G-40G-100G) Many bends in racks Future proof
\rightarrow Moves, adds and changes (MACs) can disturb over time an initially well installed structured cabling system; yet no problem using Draka's new BI-OM3 / OM4 MMF
\rightarrow Max. lifecycle \& reduced CAPEX + OPEX

Draka

MaxCap-BB-OM3/4

Applications at product level

MaxCap-BB-OM3 / OM4 is recommended for:

Compact high fiber count cables Flexible cable designs

Example:
Parallel Active Optical Cable in a variety of data capacities

(4) Draka

Thank you for your attention

